Nilai lim_(x→7)⁡ (√x(x-7))/(√x-√7)=⋯

www.jagostat.com

www.jagostat.com

Website Belajar Matematika & Statistika

Website Belajar Matematika & Statistika

Bahas Soal Matematika   »   Limit   ›  

Nilai \( \displaystyle \lim_{x \to 7} \ \frac{\sqrt{x}(x-7)}{\sqrt{x}-\sqrt{7}} = \cdots \)

  1. 14
  2. 7
  3. \( 2 \sqrt{7} \)
  4. \( \sqrt{7} \)
  5. \( \frac{1}{2} \sqrt{7} \)

(SPMB 2006)

Pembahasan:

\begin{aligned} \lim_{x \to 7} \ \frac{\sqrt{x}(x-7)}{\sqrt{x}-\sqrt{7}} &= \lim_{x \to 7} \ \frac{\sqrt{x}(x-7)}{\sqrt{x}-\sqrt{7}} \times \frac{\sqrt{x}+\sqrt{7}}{\sqrt{x}+\sqrt{7}} \\[8pt] &= \lim_{x \to 7} \ \frac{\sqrt{x}(x-7)(\sqrt{x}+\sqrt{7})}{x-7} \\[8pt] &= \lim_{x \to 7} \ \sqrt{x} \ (\sqrt{x}+\sqrt{7}) \\[8pt] &= \sqrt{7} \ (\sqrt{7}+\sqrt{7}) \\[8pt] &= \sqrt{7} \ (2\sqrt{7}) = 14 \end{aligned}

Jawaban A.